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Abstract
Our aim was to develop a pixel-based methodology employing multiple terrain parameters for the semi-automatic identification of terrain 
edges. The procedure was applied to landform features associated with slope failures, operating on different resolutions of a digital 
terrain model (DTM). We intended to produce two outputs – grid maps base on: discrete data allowing precise identification and revealing 
a higher incidence of terrain edges than a hillshade map; floating point data visually highlighting terrain edges more sharply than 
a hillshade grid. The results showed that the grid maps generated by the new method: Binary Terrain Edges – BinT and Quality Terrain – 
QT exhibited more terrain edges than the hillshade map. The method demonstrated its robustness when used across three different 
resolutions of DTM. It was applied within the protection buffer zone of the overhead transmission powerline (OHL). Slightly more than 
half of the total of identified and manually digitised slope failures using the hillshade map supplemented with failures observed in QT 
may not necessarily be subject to field confirmation. OHL is a long-distance construction passing a variety of environments. Therefore, 
the detection of slope failures requires semi-automatic or automatic procedures to be costless and time-saving.
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1. Introduction
Slope failures have serious consequences for land cover and 

constructions (Aigbadon et al, 2021). A landslide hazard map or 
model produced using GIS technologies is usually a common tool 
used to mitigate or prevent slope movement (Liu et al., 2021). 
Verification of slope failures identified in digital products is 
routinely carried out in the field by geological experts, often in 
collaboration with geodesists (Prokešová et al., 2010; Podolszki 
et al., 2022). Today's technology makes it possible to accurately 
identify slope failures, even subtle ones, in detailed and accurate 
digital terrain models (DTMs) where field verification would not be 
necessary (Ortuño et al., 2017). The advantage of using hillshaded 
derivatives of DTMs is the visual highlighting of landforms that 
are difficult or impossible to identify from aerial photographs or 
field observations (Van Den Eeckhaut et al., 2007). However, many 
researchers still recommend selective field validation to improve 
the reliability of landslide mapping outputs, particularly when 
the datasets or the algorithms involved are untested in specific 
geological or environmental settings (Jaboyedoff et al., 2018).

Geohazards intersecting with technical and urban constructions 
may result in significant economic damages (Liščák et al., 2010). 
The Slovak republic has no national report accounting slope 
failures within urban structures or energy infrastructure. 
Strategies for landslide prevention are outlined in the "Program for 
the Prevention and Management of Landslide Risks (2014–2020)" 
(Ministry of the Environment of the Slovak Republic, 2018). An 

engineering geological survey conducted between 2018–2019 
identified 13 sites with the most severe landslides, demanding 
considerable attention due to their associated risk to life and 
properties (Mašlár et al., 2020). Semi-automatic detection of 
landslides would accelerate the updating of current databases.

The research presented in the article deals with one of the 
project's objectives that was carried out in cooperation with 
the Nuclear Power Plant Research Institute (VUJE a.s.). The 
project purpose was to produce two outputs that would be useful 
for overhead power line (OHL) maintenance: 1) a method for 
classifying tree species – a model for predicting their growth under 
the power line; 2) a method for semi-automatic identification of 
terrain edges indicating the presence of slope failures. An area 
under investigation was a protection buffer zone of 100 m to 
each side from the transmission powerline. In the Carpathian 
Mountains of the Slovak Republic, OHLs are often located in steep 
and rugged terrain, usually covered by forests. This is also the case 
in this study. Therefore, the identification of slope failures requires 
specific procedures to make mapping efficient – fast and costless.

2. Theoretical background

2.1 Identification of slope failures features in high-resolution 
digital terrain models

A classification by Cruden & Varnes (1996) updated by the British 
Geological Survey (2024) defines the basic types of landslides: falls, 
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topples, slides (rotational and translational) and flows. Landslides 
are characterised by the following features: crown, main scarp, 
top, head, minor scarp, main body, foot, tip, toe, surface of rupture, 
toe of surface of rupture, surface of separation, displaced material, 
zone of depletion, zone of accumulation, depletion, depleted mass, 
accumulation, flank, and original ground surface. A spatial model 
(Fig. 1a) shows the features – subtle landforms examined in this 
study and the features of the real landslide, one of several, which 
were identified in the study area (Fig. 1b). Although they span 
a few decimetres or metres, they play a crucial role in identifying 
an initial phase of slope movement.

Subtle landforms can be identified within high-resolution 
airborne Light Detection and Ranging (LiDAR) DTMs (Abellan 
et al., 2016; Mora et al., 2018; Chudý et al., 2018a,b; Martins 
et al., 2020). The main limitation lies in the point density of the 
LiDAR dataset (Pirotti & Tarolli, 2010). High-resolution DTMs 
enable the measurements of multi-temporal slope displacements 
(Fernández et al., 2017). The Unmanned Aerial Vehicle (UAV) 
is a relatively low-cost technology for obtaining detailed aerial 
images. The applicability of UAV data depends on the Structure-
from-Motion (SfM) software processing of the photogrammetric 
material and the drone pilot's ability to navigate the UAV over the 
slope failure in complex natural settings (Giordan et al., 2020). 
It allows regular surveys to produce a time series of high-
resolution images (Rossi et al., 2018; Mercuri et al., 2023). Even, 
Digital Surface Models (DSMs) which are produced in detail and 
high accuracy allow a series of measurements of slope failures 
variables to compute volumetric changes (Turner et al., 2015; 
Du et al., 2023). The most detailed mapping and assessment of 
spatio-temporal morphological change in any area is provided by 
combining data from geomorphological field surveys, LiDAR and 
UAVs (Borrelli et al., 2019). However, applying this approach on 
a wide scale is technologically demanding and takes a long time to 
process heavy datasets.

Landforms such as gullies, dunes, lava fields and landslides, all 
have similar features exhibiting high roughness contrast to the 
surrounding terrain. Thus, terrain roughness is an important 
variable to capture these features in DTMs (Korzeniowska 
et al., 2018). It is formed by sharply curved terrain edges. They 
are defined as significant local changes which are found on the 
border between two different regions. Edge detection is considered 
to be an initial step in the process of retrieving information from 
an image (Cesar & Costa, 1995). Edge detection techniques are 
generally divided into object-oriented and pixel-based methods, 
combination of both methods (Li & Wan, 2015; Zhao et al., 2017; 
Syzdykbayev et al., 2020) and spatial data mining methods 
(Hussain et al., 2013). Pixel-based and object-based classification 
methods differ in two aspects: classification units and classification 
features (Liu & Xia, 2010).

While a number of studies have demonstrated the advantages 
of object-based classification over pixel-based classification 
(Liu & Xia, 2010), less attention has been paid to the potential 
limitations of the image segmentation algorithm (Kampouraki 
et al., 2008). A main restriction of the pixel-based analysis is a lack 
of correspondence between landslide size and pixel size (Dom�nech 
et al., 2019). However, it can be overcome with additional data from 
LiDAR with a very high resolution (Chudý et al., 2019). Although 
pixel-based methods do not work with real objects, their advantage 
is the availability of a wide range of statistical operators in any GIS 
application (Hussain et al., 2013). This was a factor in the decision 
to use a pixel-based algorithm in this research.

2.2 Semi-automatic methods to identify terrain edges
Classifying landslide patterns from DTMs has been the 

subject of numerous studies (Razak et al. 2011; Al-Rawabdeh 
et al., 2016; Mărgărint & Niculiţă, 2017; Masruroh et al., 2023). 
Slope failures are usually manually digitised based on their 
visual interpretation from aerial photographs and subsequently 
confirmed by field surveys (Długosz, 2012). A hillshade map 
is commonly used to identify and delineate slope failures (Van 
Den Eeckhaut et al., 2005). However, it has not been proven 
to be sufficiently effective in identifying subtle landforms that 
do not cast enough strong shadows (Jagodnik et al., 2020; 
Jagodnik, 2024).

Current literature lacks approaches on semi-automatic 
classification specifically addressing subtle landforms of slope 
failures (Jagodnik, 2024). This procedure demands firstly, very 
precise DTM and secondly, a combination of diverse tools to 
extract these features from digital models (Mayoral et al., 2017; 
Lee et al., 2017; Lieskovský et al., 2022). Interpretation of the 
slope failures features facilitates the identification of their 
patterns. It is an essential input for machine learning algorithm or 
the development of spatial landslide models based on topographic 
zoning (Masruroh et al., 2023). Extraction of these features can 
be performed in eCognition Developer, a software development 
kit that uses an object-oriented approach to semi-automated 
image analysis (Shruthi et al., 2011). The authors noted that 
the accuracy uncertainty of the classified objects needs to be 
revalidated or corrected by other methods, and that the results 
also contain false positives. However, it should be noted that 
other methods may also produce false positives. Another popular 
method for detecting landform patterns in DTM is Geomorphon. It 
is a r.geomorphon tool that operates under Geographic Resources 
Analysis Support System (GRASS) GIS and Quantum (QGIS) 
GIS applications. The algorithm allows to recognise common local 
morphological elements such as flats, peaks, ridges, shoulders, 
spurs, slopes, hollows, footslopes, valleys, and pits (Jasiewicz 
& Stepinski, 2013). However, it is not designed to detect the subtle 

Fig. 1: A general model of a slope failure (a), a real landslide demonstrating the features investigated in this study (b)
Source: Author’s conceptualisation (a), The Geodesy, Cartography and Cadastre Authority of the Slovak Republic: DMR5.0 (1 m) JTSK(JTSK03) 
and ortho-photomosaic, State Geological Institute of Dionýz Štúr: slope failures; modified by the author (b)
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landforms of terrain edges on slopes. A method that was primarily, 
but not only, designed to detect subtle landforms developed Zhou 
et al. (2018). These performed multi-neighbourhood analysis to 
determine the edges of linear terrain features of ridge, shoulder, 
valley and foot-slope and defined a probabilistic visual descriptor 
for quantifying edge pixels. The technique of edge detection 
usually begins with the filtering to reduce data noise, followed 
by enhancement to identify changes in the intensity between two 
different regions and finishes with the detection of lines with 
strong edge content (Cesar & Costa, 1995). These methodological 
steps sketched a concept for a newly proposed method.

2.3 The aim
The aim of the article was to develop a methodology for semi-

automatic identification of pixels interpreting sharply curved 
terrain edges of scarps, cracks and transverse ridges in the 
main landslide's body and its accumulation zone (Fig. 1a,b). We 
intended to develop an algorithm to detect pixels with “strong 
edge content”, as defined by Cesar & Costa (1995), instead of lines, 
which are interpreted as vectors and are the output of the object-
oriented methods. Terrain edges detected by the new method 
would contrast sharply with the smooth slopes around them.

A new method is designed to work with digital formats of a grid 
map based on:

• Discrete data allowing precise identification and revealing 
terrain edges of subtle landforms, and the main output is binary 
grid of terrain edges (Binary Terrain Edges, BinTerrain, BinTE);

• Floating-point data visually highlighting terrain edges, and 
the main output is grey-shaded grid of terrain edges (Quality 
Terrain, QTerrain, QT).

In terms of the method applicability, we assume that:

• Both grid maps produced by the new method exhibit more 
terrain edges than could be detected in the hillshade map;

• It could be applied on DTMs with different resolutions, 
allowing objects to be studied at different scales;

• The usability of the grid map on steep slopes above 25° may be 
limited due to the low contrast between the terrain edges of 
slope failures and other landforms in their vicinity.

3. Data and methods

3.1 Study area
The wider area of slope failures alongside the OHL under 

investigation is located in the north-western part of the Slovak 
Republic near the towns of Považská Bystrica and Žilina and 
covers an area of 10,897 hectares. The terrain edge survey was 

carried out within the OHL buffer zone, which is 100 metres 
on either side of the transmission line, with a total length of 55 
kilometres and an area of 1,090 hectares (Appendix 1). The 
geological environment is an important indicator of potential slope 
failures and they were identified on a public 1:50,000 scale map 
(Šimeková et al., 2006) within the wider study area (Fig. 2, black 
line). Their coverage was evaluated using QGIS application. Slope 
failures occurred over 470 ha (4%) of the wider area. Of these 
landslides, 28 ha were active, 226 ha potential, and 216 ha were 
stabilised forms. The Quaternary Geological Map of the Slovak 
Republic (Maglay et al., 2011) indicated two landslides (Fig. 2, 
red line). The presence of slope failures was the main criterion for 
the selection of study sites and the production of a high resolution 
DTM used for terrain analysis.

The proposed method was applied to three sites, designated A, 
B and C, and located in different geological formations and natural 
environments (Tab. 1). Sites A and B are landslides and they were 
chosen to demonstrate the efficiency of the method on different 
slopes. Site C demonstrates the applicability of the method on 
different DTM resolutions. Extra dense LiDAR data were not 
available for sites A and B. Therefore, site C was considered for 
the investigation. It is U-shaped gully with minor scarps on its 
banks and exposed bare substrate in its upper parts. This is the 
case of the morphological structure that could pose a potential 
risk for the development of deep-seated slope slides. Although this 
is not the case at the study site, as noted by the authors (Parkner 
et al., 2007), it is important to identify and monitor gullies in 
certain landslide-prone areas. Since site C is not the landslide, the 
results are presented in the appendix.

3.2 Data acquisition
The maps used in the research were obtained from public 

repositories. Digital terrain models were generated from DMR3.5 
and DMR5.0 datasets which are freely available at public portals 
(The Geodesy, Cartography and Cadastre Authority of the Slovak 
Republic, 2023a, b, c). DMR5.0 is a product of high-resolution LiDAR 
with a point cloud density of 5 points/pixel with overall vertical 
accuracy equal to or less than 0.25 metres, and horizontal accuracy 
equal to or less than 0.50 metres (The Geodesy, Cartography and 
Cadastre Authority of the Slovak Republic, 2023c). DMR5.0 covers 
the full length of the OHL construction. DMR5.0 with a resolution 
of 1 metre per pixel was used in pivotal results detailing the subtle 
landforms of slope failures. The declared resolution of DMR5.0 is 
considered sufficient to detect terrain edges, as confirmed by other 
studies (Azizi et al., 2014; Ortuño et al., 2017).

Further, an extra dense LiDAR point clouds were provided by 
VUJE a.s. and captured were from a helicopter using the RIEGL 
VP-1 LiDAR scanner and acquired in the period between April 

Tab. 1: Geomorphology, geology and climate of the study sites
Sources: (a) State Geological Institute of Dionýz Štúr: geomorphology, geology and bedrock, climate, rainfall and temperature, (b)The Geodesy, 
Cartography and Cadastre Authority of the Slovak Republic – DMR5.0 (1 m) JTSK(JTSK03): slope, modified by the author

Site A B C

Geomorphological units(a) Rajecká Kotlina Basin, a subunit of 
Žilinská Kotlina Basin

Lučanská Malá Fatra Mts., a subunit of 
Malá Fatra Mts.

Podmanínska Pahorkatina Upland, 
a subunit of Považské Podolie Valley

Regional geology(a) Inner Carpathian Palaeogene Core Mountain Range Klippen Belt Mountain Range (Puchov 
section)

Bedrock(a) Deluvial-polygenetic sediments: clayey-
clayey and sandy slope clays

Gutenstein beds – Gutenstein (Annaberian) 
limestones: dark grey and black coarse-
grain, layered, worm-like limestones; 

Ramsar dolomites: grey layered dolomites

Sandstones, silts, calcareous claystones, 
laminated silts and sills, and 

conglomerates

Clime-geographic type(a)
Basin climate, slightly cool Mountainous climate, cold Mountainous climate, moderately warm

Annual rainfall interval [mm](a) 600–850 800–1100 600–850
Annual air temperature (1961–1990) 
average [°C](a)

7.5 6.5 7.5

Slope mean(b) 9° 18° 9°
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and June 2023. RIEGL VP-1 had minimum scanning range 
of 5 m, accuracy 15 mm, precision 10 mm, maximum effective 
measurement up to 750,000 meas.s−1 (820 kHz PRR & 330° 
FOV), laser pulse repetition mode up to 820 kHz, near infrared 
laser wavelength, echo signal density for each echo signal high 
resolution, laser beam divergence 0.5 mrad. A point density 
varied from 484 PPSM (points per square metre) for all returns 
to 254 PPSM for the last returns to assess the applicability of 
the proposed method at sub-metre resolution. The LAS files 
were converted to the LAZ format, following the procedure 
published by Chudý et al. (2019). LAStools application was used 
to isolate ground return points. These points were converted to 
the vector format, and a fine-scale DTM was created using the 
TIN interpolation module in geographic information system 
(GIS) application. Using the original quarter mm (0.00025 metre) 
resolution of the LAS x,y,z tuples, a very high resolution DTM 
was produced at 0.15 metres per pixel. The original LAS format 
was projected in the S-JTSK [JTSK03] / Krovak East North 
(EPSG:8353) coordinate system.

VUJE a.s., provided also information about the OHL 
construction, its buffer zone of protection (100 m) and poles of the 
high voltage power line. 

The datasets were processed using QGIS 3.28.10-Firenze, 
licensed under the GNU General Public License, and LAStools-a 
LiDAR processing software (version 220613, unlicensed). Spatial 
visualisations of subtle landforms were processed using the 
QGIS2threejs exporter plugin (QGIS Python Plugins Repository, 
2022) and the EPSG 5514 coordinate system was set-up to process 
and render outputs.

3.3 Manual digitisation of slope failures in a hillshade map
Manual delineation of slope failures using a hillshaded map is 

a conventional technique applied in many recent studies (Van Den 
Eeckhaut et al., 2005; Długosz, 2012). We digitised slope failures 
in locations where we could visually detect terrain edges of subtle 
landforms indicating slope failures. Number and area [ha] were 
evaluated using the Field Calculator in QGIS.

Fig. 2: The study area in the Slovak Republic and sites A, B and C
Source: VUJE a.s.: overhead transmission powerline, poles and protection zone, State Geological Institute of Dionýz Štúr: slope failures, 
regional geology and geology, The Geodesy, Cartography and Cadastre Authority of the Slovak Republic: Hillshade DMR3.5, Google Maps 
Tileset, modified by the author
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3.4 New method – morphometric variables used to identify 
terrain edge

Local primary morphometric variables allow the detection of 
subtle landforms. They are calculated based on their immediate 
surroundings, derived directly from the DTM without additional 
input, and can be calculated independently of the wider area 
represented.

Slope is one such variable. It is a derivative of altitude (first 
derivation), measuring the maximum change in elevation 
relative to the distance between a cell and its eight neighbours 
(Barbosa et al., 2021). The slope gradient plays a pivotal role in 
movement tendencies. Slopes prone to landslides are expected to 
be predominantly between 30° and 45° (Guthrie & Evans, 2004) or 
between 15° and 25°, while those above 25° commonly experience 
shallow slides (Zêzere, 2002; Frattini et al., 2004). In the detection 
of landslide topography, slope is commonly fused with other 
elevation derivatives (Berti et al., 2013; Mora et al., 2018).

Terrain roughness, an efficient way to differentiate various 
landforms, displays elevation variability within a defined radius 
but it is highly sensitive to scale (Schillaci et al., 2015). Maximum 
curvature of the terrain was computed, rather than the terrain 
roughness, for the purposes of this research. Curvature is a second 
derivation of altitude. It highlights the convexity or concavity 
of the terrain. Positive values indicate convex, negative concave 
and zero values indicate planar landforms on slopes (Evans 
& Cox, 1999; Shary et al., 2002; Wilson, 2012). Local directions 
of maximum curvatures indicate the steepest variation of the 
surface normal (Alliez & Desbrun, 2002). Maximum curvature 
is an attribute that is very powerful in delineating defects and 
defect geometries (Roberts, 2001). The SAGA module of Terrain 
Analysis – Morphometry: Slope, Aspect, Curvature module was 
used to calculate maximum curvature and slope (SAGA-GIS Tool 
Library Documentation, 2001).

Sky view factor is a solar variable that is the secondary 
morphometric variable calculated to quantify interactions between 
the Earth's surface and the atmosphere (Wilson, 2012). These 
variables, interpreted in raster formats as shaded terrain, emphasise 
the brightness and contrast of landform discontinuities. The sky view 
factor visualises micro-landforms regardless of their orientation to 
the cardinal points. Diffuse light overcomes directional problems 
associated with hill shading (Kokalj & Somrak, 2019), and when 
combined with slope parameters, shaded terrains exhibit distinct 
terrain edges (Mayoral et al., 2017). In this study, we applied the 
sky view factor (SAGA-GIS Module Library Documentation v2.2.0, 
2008), which ranges from 1 for completely unobstructed surfaces 
to 0 for completely obstructed surfaces (Harris & Baird, 2018). The 
search radius was set to 100 metres for the LiDAR DMR3.5 and 5.0, 
and 5 metres for the extra dense LiDAR data.

3.5 New method – calculation of terrain edge

3.5.1 A grid map based on discrete data

While the proposed method is pixel based, then terrain edges 
were evaluated in a grid form as pixels and not as vector lines. 
To identify the discontinuities in the terrain, the raster calculator 
was employed in operations on raster to multiply the slope and sky 
view factor grid layers. Maximum curvature values were displayed 
using a discrete colour ramp and interpreted within quantile 
ranges, typically used for ordinal data ranking within categories 
(GISGeography, 2023). Thresholding is common procedure in 
terrain analysis and its output is a binary classification in which 
data values above certain thresholds can be identified as target 
features (Zhou et al., 2018). Thus, values of the class representing 
the most convex landforms (higher than 0.0496 in this study) 
were used to compute a binary grid “BinaryMaximumCurvature”. 
Further, the binary grid was subtracted from the “Slope” grid, 

multiplied by “SkyViewFactor” and saved as “TerrainEdges”. This 
mathematical operation simply removes repetitive, and therefore 
redundant pixels (ARCGISpro, 2023).

A pseudo formula of the calculation follows:

OutputRaster(“TerrainEdges”) =

= Raster(“Slope” * “SkyViewFactor”) – Raster(“BinaryMaximal
Curvature”)

The output of “TerrainEdges” was again interpreted with 
discrete symbology using quantile distribution values. Then 
it was reclassified to a binary grid using a threshold of the 
class with the highest values (higher than 0.0310 in this 
study) representing terrain edges. The output was saved as 
“BIN_TERRAIN_EDGES” (BinTE). This is the first product 
of the proposed methodology. A visual comparison reveals 
a lear distinction between the “BinaryMaximalCurvature” and 
“BIN_TERRAIN_EDGES” grids. BinTE contains less pixels but 
matches better terrain edges (Fig. 3).

3.5.2 A grid map based on floating-point data

To create a training dataset for the supervised classification in 
the next step, a raster was converted to a vector format of an ESRI 
shapefile using the Polygonise function. Further adjustments 
were made to remove redundant data, which means areas smaller 
than 4 m2, consisting of three adjacent pixels in each direction. 
A vector output of “BIN_Terrain_Edges_4px” was created. In the 
extra dense LiDAR dataset, polygons with an area of 0.0225 m2 
were removed. Polygons derived from the DMR3.5 derivative were 
not adjusted due to the relatively small study area (a slope failure 
in study area C was up to 4 ha), which did not allow the removal 
of any pixels from the 10m/px DTM to maintain output accuracy. 
The main purpose of this step was to create a training vector 
dataset that best fits the target shapes of a pattern of terrain 
edges specific to the landforms being investigated. However, if it 
is necessary to preserve detailed terrain edges for any research 
purposes, this pixel removal step can be omitted.

SAGA Supervised Classification module (SAGA-GIS Tool 
Library Documentation v2.2.0, 2005) was employed to generate 
a “QUALITY_TERRAIN”(QT) – a floating-point raster that 
simulates shaded terrain and visually emphasises sharp, 
convex terrain edges indicating slope failures. QT is the 
second output of the proposed methodology. The process of 
the SAGA Supervised Classification involved a grid of “Slope” 
multiplied by “SkyViewFactor”. Statistics were loaded from 
“BinaryMaximumCurvature”. The training class was set up as 
a single value column, representing a specific target shape to be 
highlighted as the main output of the grey shaded grid. Chosen 
was the minimum distance method with the probabilistic reference 
set to relative. The default thresholds for distance, angle and 
probability were maintained default. The intricate shapes of the 
polygons “BIN_Terrain_Edges_4px” derived from three different 
sites (A, B, and C), are anticipated to exert an influence on each 
single result of the supervised classification of “QUALITY_
TERRAIN”.

The Supervised Classification is primarily a tool designed to 
categorise land cover based on spectral imagery, using training 
sites of known land cover and user-defined land cover. It classifies 
pixels by grouping them into classes according to the spectral data 
of the training site pixels (SAGA-GIS Tool Library Documentation 
v2.2.0, 2005). The intended usage for this research was different. 
We did not expect to produce an exact classification. We anticipated 
to get a range of values which could be divided into two groups. 
One group indicated a high level of confidence and reliability in 
the final output grid, while the other, with values close to zero, 
indicated a high level of uncertainty. Cesar & Costa (1995) defined 
edges as significant local changes at the border of different region. 
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Fig. 3: Site A: process of calculation of a binary grid representing discontinuities in the terrain – terrain edges symbolised with value 1
Source: VUJE a.s.: overhead transmission powerline, poles and protection zone, The Geodesy, Cartography and Cadastre Authority of the 
Slovak Republic: DMR5.0 (1 m) JTSK(JTSK03), State Geological Institute of Dionýz Štúr: slope failures, modified by the author
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Fig. 4: Site A: process of calculation of a floating-point based grid representing discontinuities in the terrain – terrain edges (upper part). Sites 
A, B, C: outputs of the supervised classification (lower part)
Source: VUJE a.s.: overhead transmission powerline, poles and protection zone, The Geodesy, Cartography and Cadastre Authority of the 
Slovak Republic: DMR5.0 (1 m) JTSK(JTSK03), State Geological Institute of Dionýz Štúr: slope failures, modified by the author
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Thus, the group of values close to zero represented discontinuities 
in the terrain – terrain edges on the slopes. These features differed 
significantly from their surroundings. The classification algorithm 
categorises them as areas of lower quality due to their uniqueness, 
higher uncertainty or greater distance from the class centroid 
within the dataset. On the other side, higher values indicated 
closer proximity to the centroid and a stronger association with 
a particular class.

As an experiment, we merged the “QUALITY_TERRAIN” grids 
from sites A, B and C into a virtual raster (QGIS Python Plugins 
Repository, 2021) with three separated bands of RGB spectrum. 
A single virtual layer was a pointer to merged grids. The multi-
band symbology of the merged output “RED_GRAY_CONTRAST” 
visualised terrain edges in contrasting colour – red against other 
grey-shaded terrain. The symbology settings of the output raster 
marked the first band as the second and the second and third 
as the third band of RGB to produce a red-grey colour contrast. 
Other settings included a normal blend mode, brightness set 
to 15, gamma set to 1, saturation set to 20 and other parameters 
left at their default values (Fig. 4).

3.6 Evaluation of terrain edges in derivatives of digital terrain 
models 

3.6.1 Comparison of shadows casted by terrain edges in a hillshade map 
with QTerrain

Shadows casted by terrain edges were compared within three 
study sites (A, B and C)

The first, “QUALITY_TERRAIN” raster was examined against 
a “HILLSHADE” raster and the results were compared and 
evaluated [ha] per each 25 ha of the study site. Basic unit that 
was used for evaluation is a pixel of size of one square metre 
(DMR5.0).

A pseudo formula of the calculation follows:

Sites A, C:

((“QUALITY_TERRAIN@1”>=0.06) ^ (“QUALITY_
TERRAIN@1”<=0.06)) * 1

((“HILLSHADE@1”>=110) ^ (“HILLSHADE@1”<=110)) * 1

Site B:

((“QUALITY_TERRAIN@1”>=0.06) ^ (“QUALITY_
TERRAIN_B@1”<=0.06)) * 1

((“HILLSHADE_B@1”>=190) ^ (“HILLSHADE@1”<=190))

Reclassification thresholds represent the values of the darkest 
shadows and were taken as the best result from the experimental 
testing of the appropriate value.

The second, a longitudinal and a transversal profiles were 
constructed across each slope failure within the study site. Terrain 
edges are inherently presented in the “QUALITY_TERRAIN”, while 
in “HILLSHADE” they were identified using an edge detection 
algorithm from the SAGA-GIS Wombling Edge Detection module, 
applied with default parameters (SAGA-GIS Module Library 
Documentation v2.2.1, 2015). Spatial Wombling is an algorithm used 
to detect edges in a two-dimensional space (Strydom & Poisot, 2023). 
Vectorised polygons of terrain edges of “QUALITY_TERRAIN”, and 
edges detected using the Wombling algorithms in “HILLSHADE” 
were intersected with a terrain profile created from DMR5.0. 
The procedure applied qProf plugin 0.5.1 (QGIS Python Plugins 
Repository, 2023). A length [m] of terrain edges was evaluated.

3.6.2 Evaluation of slope failures and terrain edges along the OHL 
construction

Slope failures which were difficult to recognise in “HILLSHADE” 
were additionally digitised using “QUALITY_TERRAIN”. It does 

not mean that we were not able to see these subtle landforms in 
“HILLSHADE” but they did not cast enough strong shadows to 
identify them as terrain edges.

We compared the number and area [ha] of slope failures 
identified in “HILLSHADE” and “QUALITY_TERRAIN” and 
categorised them into three groups: slope failures not requiring 
field confirmation that were clearly visible in “HILLSHADE”; 
slope failures not requiring field confirmation that were clearly 
visible in “QUALITY_TERRAIN”; and slope failures requiring 
field confirmation. Although terrain edges were present, these 
we were not able to align to typical landslide features defined in 
Figures 1a and 1b. The presence of all digitised slope failures in 
the vicinity of the poles of the high-voltage power line was also 
recorded and evaluated.

BinTE contains more data about possible terrain edges as 
a binary grid of shadows casted by terrain edges of QT. Therefore, 
terrain edges were highlighted in BinTE by in red colour to 
demonstrate a pattern of subtle landforms typical for slope 
failures for each individual locality. Pattern of subtle landforms 
typical for slope failures could be used in the future to train 
a learning machine.

Enumeration of all possible slope failures within the extensive 
study area was not the primary objective of this article. The 
results of this methodological step only illustrate the potential 
applicability of the new method in practice. Graphical outputs of 
this methodological step are presented in the appendix.

4. Results

4.1 Evaluation of slope failures in a hillshade map
Totally, 22 slope failures was visually identified and manually 

delineated using “HILLSHADE” in the area along the OHL 
construction. These were supplemented with slope failures 
identified in “QUALITY_TERRAIN”. Therefore, are interpreted 
in a map all together in the further results (4.3).

4.2. Evaluation of terrain edges in a hillshade map compared 
with QTerrain

Terrain edges are visible in both grid maps based on floating-point 
data. Undullating terrain and the main scarp are clearly visible in 
both “HILLSHADE” (Fig. 5 A-I., B-I.) and “QUALITY_TERRAIN” – 
the product of the new method (Fig. 5 A-II., B-II.). However, the 
grey scale grid in Figure 5 A-II. and B-II. clearly interprets even 
small scarps and the contrast in the grey shading depicts undulated 
terrain in the transport zone of the landslide. The difference is 
exactly illustrated in the reclassified greyscale maps into binary 
grids of “HILLSHADE” (Fig. 5 A-III., B-III.) and “QUALITY_
TERRAIN” (Fig. 5 A-IV., B-IV.). Shadows casted by terrain edges 
were present at least twice more in “QUALITY_TERRAIN” against 
“HILSHADE” in case of site A (Tab. 2, Fig. 5 A-III. and A-IV.) 
while about fifty times more of shadows were detected “QUALITY_
TERRAIN” against “HILSHADE” in site B (Tab. 2, Fig. 5 B-III. 
and B-IV.). Site A exhibited lower difference in the presence 
of terrain edges shadow evaluated in the “HILLSHADE” and 
“QUALITY_TERRAIN” against site B (Tab. 2, Figs. 6 and 7). On 
the other hand, the proposed method had better efficiency on site 
B where the presence of terrain edges was circa seven times higher 
in “QUALITY_TERRAIN” against “HILLSHADE” while shadows 
casted by terrain edges exhibited similar area in both binary grids 
in case of site A (Tab. 3). Results of site C demonstrating visual 
comparison are presented the appendix (Appendix 2).

Spatial visualisations created from DMR5.0. of “HILLSHADE” 
and “QUALITY_TERRAIN” overlapped with ortho-photomosaic 
of sites A and B demonstrated markedly higher contrast of 
terrain edges of landslides in “QUALITY_TERRAIN” against 
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Fig. 5: Comparison between A-I., B-I. – the grayscale grid of “HILLSHADE” and A-II., B-II. – “QUALITY_TERRAIN”. Visual comparison 
between A-III., B-III. – reclassified grayscale grid to binary grid of “HILLSHADE” and A-IV., B-IV. – reclassified grayscale grid to binary grid 
of “QUALITY_TERRAIN”
Source: VUJE a.s.: overhead transmission powerline, poles and protection zone, The Geodesy, Cartography and Cadastre Authority of the 
Slovak Republic: DMR5.0 (1 m) JTSK(JTSK03), State Geological Institute of Dionýz Štúr: slope failures, modified by the author; author’s 
elaboration: “HILLSHADE”, “QUALITY_TERRAIN”

Site/slope mean A/9° B/18° A/9° B/18°

Reclassified shadows of edges [ha] [%]
“HILLSHADE”: A ≤110 (A-III).; B≤190 (B-III.)* 0.52 0.13 2.08 0.52
“QUALITY_TERRAIN”: A (A-IV)., B ≤ 0.06 (B-IV.)* 1.35 6.62 5.40 26.48
Total area 25 25 100.00 100.00

Wombling filter applied “HILLSHADE” to sum-up terrain edges and “QUALITY_TERRAIN” [ha] [%]
“HILLSHADE” (red pixels) 1.96 1.77 7.84 7.08
“QUALITY_TERRAIN” (blue pixels)** 2.41 12.35 9.64 49.40
Total area 25 25 100.00 100.00

Tab. 2: Evaluation of terrain edges in the site area of 25 ha for sites A and B
Notes: *Numbering of sites is adopted from Figure 5; **Figures 6 and 7
Source: Authors’ survey
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“HILLSHADE” also in forest (Appendix 3) and the similar contrast 
exhibited a gully in site C (Appendix 4). However, rugged terrain 
and steep slope (18°) made the QTerrain dark and contrast was not 
so visible in case of site B as we could observe in forest in C with 
smoother slope (9°). Site A had slope mean parameter the same as 
site C but a high contrast of slope steepness is visible between the 
terrain edges of slope failure and the surrounding slopes.

4.3 Evaluation of digitised slope failures a hillshade map enriched 
with QTerrain data

Slope failures digitised manually in grids of “HILLSHADE” 
and “QUALITY_TERRAIN” cover an area of 50 ha. In 
“HILLSHADE” 42 ha of slope failures were identified. Slope 
failures in an area of 8 ha were additionally detected using 
“QUALITY_TERRAIN” (Appendix 5). The floating-point based 
grid of “QUALITY_TERRAIN” highlighted and markedly 
distinguished these subtle landforms which “HILLSHADE” did 

Fig. 6: Site A: Terrain edges evaluated in the grids of “HILLSHADE” and a product of the new method – “QUALITY_TERRAIN”
Source: VUJE a.s.: overhead transmission powerline, poles and protection zone, The Geodesy, Cartography and Cadastre Authority of the 
Slovak Republic: DMR5.0 (1 m) JTSK(JTSK03), State Geological Institute of Dionýz Štúr: slope failures, modified by the author; author’s 
elaboration: “HILLSHADE”, “QUALITY_TERRAIN”

Site/slope mean A B A B

Longitudinal terrain profile from edges [m] [%]

“HILLSHADE” 52.00 13.48 17.00 7.88

“QUALITY_TERRAIN” 52.02 96.81 17.00 56.61

Total length 305.96 171 100.00 100.00

Transverse terrain profile from edges [m] [%]

“HILLSHADE” (red pixels) 24.00 5.42 15.68 6.74

“QUALITY_TERRAIN” (blue pixels) 35.01 39.86 22.87 49.54

Total length 153.09 80.46 100.00 100.00

Tab. 3: Evaluation of terrain edges in the terrain profiles of the 
sites A and B
Source: Authors’ survey
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not illustrate enough, these landforms – features typical for slope 
failures (explained in Fig. 1) (Appendices 6-1 and 6-2). “BIN_
TERRAIN_EDGES” illustrated terrain edges in detail of black-
coloured pixels.

In total, 13.5 ha of terrain edges was detected, 11.38 was observed 
inside the manually digitised polygons from “HILLSHADE” 
and 2.22 ha from polygons digitised in “QUALITY_TERRAIN”. 
Slope failures clearly visible in “HILLSHADE” which do not 
require verification in the field were present on fifteen localities, 
namely: 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22. Other, 
evidenced in “QUALITY_TERRAIN” were found on two localities, 
namely: 5QT, 6QT. Then, thirteen have required to be confirmed 
in the field. Appendices 6-1 and 6-2 demonstrates a pattern of 
terrain edges (in red) on which basis slope failures are easy to 
detect. Seven poles of the high voltage power line are located in 
the polygons of digitised slope failures (3, 6, 8, 9, 11, 13, 15) from 
which two sites needed to be confirmed in the field (3, 7).

Fig. 7: Site B: Terrain edges evaluated in the grids “HILLSHADE” and a product of the new method – “QUALITY_TERRAIN”
Source: VUJE a.s.: overhead transmission powerline, poles and protection zone, The Geodesy, Cartography and Cadastre Authority of the 
Slovak Republic: DMR5.0 (1 m) JTSK(JTSK03), State Geological Institute of Dionýz Štúr: slope failures, modified by the author; author’s 
elaboration: “HILLSHADE”, “QUALITY_TERRAIN”

5. Discussion

5.1 Benefits of the new method and challenges for future research
Subtle landforms of terrain edges are a subject of study for 

variety of landforms such as landslides (Chiba et al., 2008; 
Korzeniowska et al., 2018; Tarolli et al., 2020), gullies (Na 
et al., 2017; Yan et al., 2024), cultural terraces (Pijl et al., 2020), 
roads (Jiao et al., 2021; Slámová et al., 2023), linear structures 
(Satari & Kazimi, 2021) and many others.

Open-source QGIS tools have opened many possibilities 
for developing a variety of visualisation techniques and 
effective procedures are offered through GIS plugins or 
modules (Tzvetkov,  2018). One such licensed Python module – 
CSMapMaker – was developed specifically for landslide detection. 
It's released under the GNU Public License (GPL) Version 2 
and authorised by Kosuke Asahi (QGIS Python Plugins 
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Repository, 2019). This module enables the identification of 
landslides based on a red relief image map (RRIM) and colour 
contrast formed by terrain edges visualised by superimposing 
different derivatives of a digital terrain model (Chiba et al., 2008; 
Chiba & Hasi, 2016). A first comparison between RRIM outputs 
and landslides detected using a binary raster of terrain edges 
introduced Chudý et al. (2019).

RRIM is a set of superimposed grid maps, not a single raster. 
The outputs of the newly developed method are: the binary grid 
of BinTerrain (“BIN_TERRAIN_EDGES”) (Fig. 3), the grey 
scaled grid of QTerrain (“QUALITY_TERRAIN”) and its red-grey 
coloured modification “RED_GRAY_CONTRAST” (Fig. 4). The 
advantage of interpreting terrain edges in a single grid map over 
RRIM lies in the potential for further processing using raster-
based operations.

The advantages of the pixel-based method lie in the number of 
GIS tools readily available and usable for operations on the pixel 
raster intended for digital terrain models, even for the common 
user. Logical and arithmetic operations, classification, overlay, 
and fusion of images derived from detailed digital models can 
yield derivatives applicable across various scientific disciplines, 
such as archaeology (Kokalj & Somrak, 2019; Štular et al., 2012), 
geomorphology for slope deformation indications (Pirotti & 
Tarolli, 2010; Guzzeti et al., 2012; Peternel et al., 2017; Chudý 
et al., 2019; Jagodnik et al., 2020), applied ecology (Leempoel 
et al., 2015), or environmental history (Lieskovský et al., 2022). 
Combining land cover structures with quasi-3D relief raster 
files, such as overlapping slope, topographic openness, and 
multidirectional hillshade, proves valuable in visualising the 
topographic pattern of slope failures, even in the case of older 
landslides (Lee et al., 2017).

Easy transfer between raster and vector forms enables simple 
measurements of slope movements. Measuring is important to 
monitor slope failure activity (Lucieer et al., 2014) and it can 
be achieved using multi-temporal LiDAR digital terrain models 
(Anders et al., 2013). Binary interpretation of terrain edges 
pixels in the grid makes it possible to identify, delimit and finally 
evaluate their area or length as we documented on the study sites. 
Terrain edges of slope failures appeared more frequently and 
on more extensive area in “QUALITY_TERRAIN” as it was in 
“HILLSHADE” grid (Tabs. 2 and 3; Figs. 5, 6 and 7; Appendix 2). 
The visual prominence of the outputs of the newly developed 
method supports also spatial visualisations of “HILLSHADE” 
and “QUALITY_TERRAIN” overlapped with ortho-photomosaic. 
QTerrain exhibited markedly higher contrast in overlaid layers 
with agricultural and forest landscape against hillshade map 
(Appendices  3 and 4).

Manual digitising of subtle landforms in an extensive area would 
be time consuming and inefficient. The hillshade map does not 
provide interpretation of terrain edges in such a detail as QTerrain 
as shown at sites 1QT–8QT (Appendices 6-1 and 6-2). A user may 
unintentionally overlook and omit landslides with indistinct 
terrain edges which do not cast sufficient shadows in the hillshade 
map. Jaboyedoff et al. (2018) found that not all slope failures can 
be identified in digital derivatives of DTM. We found slightly less 
than half (13 sites) of their total number that would need to be 
confirmed in the field survey.

Regarding the extensive area along the OHL construction, we 
are aware of the spatial discontinuity of the investigated slope 
failures. The reason for the selection was the project objective to 
identify slope failures in this area using an innovative method. 
An actual challenge is to perform field measurements of terrain 
edges in the transects of site A and B using professional GNSS 
(Chudý et al., 2018a, b, Chudý et al., 2019) and adopt a method by 
Du et al. (2023) to evaluate correspondence or divergence of data 
digitally computed in the transects with data measured in the 

field. Based on the results we would be able to identify: correctly 
computed terrain edges, false positives (non-existent edges) 
and false negatives (missing edges). Further, this comparison 
would suggest which output of the new method BinTerrain 
or QTerrain could be more suitable to generate a pattern of 
landslide features. Geometric pattern consisting of geometric 
shapes (Fig. 4 and Appendices 6-1 and 6-2) derived from binary 
interpretation of terrain edges would be employed to automate 
detection and inventorying landslides on a landscape scale. Pixel-
based terrain variables thresholds allow easy and flexible adapt 
the same diagnostic terrain variables as predictive inputs to 
machine learning models (Brecheisen & Richter, 2021; Masruroh 
et al., 2023).

5.2 Applicability of the method
A prospective model for landslide mapping and monitoring is 

predicated upon the utilisation of multiscale and multitemporal 
spatially referenced data from a diverse array of sources (Hou 
et al., 2017). A geomorphometric analysis of slope failures and 
their selected features derived from disparate data sources on 
different scales enables the identification and categorisation of 
multiscale components of slope failures (Mora et al., 2018). The 
classification of landforms is inherently scale-sensitive as, for 
instance, the Topographic Position Index demonstrates (Giano 
et al., 2020). DTMs of different resolutions contain different 
topographic information, resulting in variations in the spatial 
distribution of terrain parameters on different scales, which 
has a significant impact on the spatial distribution of calculated 
parameters such as slope and water flow distribution (Thomas 
et al., 2017). The new method showed its robustness when 
it was applied on three different resolutions of DTMs and 
multiscale application was demonstrated on site C (Appendix 7). 
We compared “HILLSHADE” and “QUALITY_TERRAIN” at 
three resolutions of DTM: 10 m, 1 m and 0.15 m per pixel. The 
most obvious difference was in DMR3.5 between “QUALITY_
TERRAIN” and “HILLSHADE” in which the shape of the gully 
was difficult to recognise. DMR5.0 distinctly depicted slope failure 
features such as scarps, tension cracks, and transverse ridges, 
among others. While DMR3.5 lacked the resolution necessary to 
detect subtle landforms, on the other side, general shape of a gully 
was markedly visible. Thus, lower resolution DTMs could be 
helpful to indicate erosion objects or sliding slopes over extensive 
areas, on a landscape scale. In contrast to lower resolutions, extra 
dense LiDAR with the average point density of 254 PPSM per 
ground was used. It demonstrated the potential to complement 
the DMR5.0 data, visualising subtle landforms in intrinsic detail 
even in forests with dense tree canopy and shrub stage, rugged 
terrain, deep valleys, ravines or gullies with steep slopes which 
make obstacles for penetration of laser.

Forest has many limitations for aerial LiDAR or photogrammetry 
(Van Den Eeckhaut et al., 2007). LiDAR appears to be more 
suitable than photogrammetry for mapping subtle landforms due 
to its ability to penetrate dense canopies, whereas photogrammetry 
often leaves many data gaps (Chudý et al., 2018a,b). More detailed 
data can be collected using hyperspectral sensors. These can 
provide exceptionally detailed spectral surface reflectance data, 
but their processing, especially from airborne cameras, requires 
complex corrections, making them difficult to use for terrain 
mapping (Jakob et al., 2017). The fusion of extra dense LiDAR 
with selected indices from hyperspectral data could help to explore 
relationships between vegetation and subtle landforms (Demarchi 
et al., 2020). However, high-resolution digital models are beneficial 
for extracting target topography only when the model accurately 
represents well-defined terrain morphology (Sofia et al., 2010).

The presence of slope failures on different slope grades 
(DMR5.0) in the area along the OHL construction was indicated 
according to terrain edges calculated from “BIN_TERRAIN_



Moravian geographical reports 2025, 33(2), 70–90

82

EDGES”. More than half of their total amount inside the digitised 
polygons of slope failures was found on slopes steeper than 15° 
(7.13 ha); 4.45 ha was within the interval from 15° to 25° what 
aligns with findings from other authors (Zêzere, 2002; Frattini et 
al., 2004) and 2.68 ha was found above 25° (Appendix 5). Initially, 
we assumed that the usability of BinTerrain or QTerrain on 
slopes above 25° might be limited due to the low contrast between 
the subtle landforms of slope failures and other landforms in 
their vicinity. Terrain edges of QTerrain casted more shadows 
in case of site B with slope mean 18° against site A with slope 
mean 9° In site B, QTerrain exhibited circa seven times higher 
presence of shadows against the hillshade map (Tabs. 2 and 3, 
Figs. 5, 6 and 7).

6. Conclusions
While contactless technologies have a wide range of applications, 

their limitations lie in data quality, processing time and financial 
investment. The most efficient dataset in the research was 
considered to be DMR5.0. Results demonstrated that binary and 
grey shaded grid derivatives had sufficient resolution to visualise 
even subtle landforms which may indicate initial phases of the 
slope movement.

The main benefit of the proposed method is seen in the 
interpretation of the pattern of terrain edges which is typical 
for slope failures. Discrete interpretation BinTerrain – “BIN_
TERRAIN_EDGES” exactly shows terrain edges with a certain 
resolution given by the DTM. Binary patterns of different types 
of slope failures could be used as training datasets for machine 
learning algorithms in future research. In comparison, manually 
digitised polygons are subjectively vectorised and borders suffer 
for lack of details. Application of these polygons of slope failures as 
training datasets based on grid in machine learning is questionable. 
Here, exact binary interpretation of terrain edges would bring 
more accurate results.

The main advantage of QTerrain's floating-point grid is that 
it enhances the contrast of terrain edges, making them easy to 
recognise even in large areas on a landscape scale. Coloured 
interpretation of QTerrain is comparable with known RRIM raster 
that is the algorithm used to detect terrain edges of failed slopes. 
Applicability of the method across different resolutions of DTMs 
makes it flexible to use on different geographic scales which are 
relevant for mapping of terrain edges.

Terrain edges casted more shadows in QTerrain than in the 
hillshade map and the most visible difference was on steeper 
slopes (site B, 18°) while moderate slopes (A, 9°) have not exhibited 
so contrasting presence of shadow casted by terrain edges between 
the hillshade map and QTerrain. Moreover, as slope failures 
predominantly occur on slopes above 15°, these slopes are often 
covered with shrubs or forest. Floating-point base grid of QTerrain 
allows clear and sharp visualisation of terrain. Identification of 
subtle terrain edges in visualisations combining terrain and real 
land cover – orthophotomosaic is easier than in the hillshade map 
overlapped with land cover.
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Appendix 1: The protection buffer zone (100 m) of the overhead transmission powerline
Photos: M. Slámová (2023)
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Appendix 4: Site C – Spatial visualisations created from DMR5.0 with “HILLSHADE” and “QUALITY_TERRAIN” overlapped with 
ortho-photomosaic
Source: VUJE a.s.: overhead transmission powerline, poles and protection zone, The Geodesy, Cartography and Cadastre Authority of the 
Slovak Republic: DMR5.0 (1 m) JTSK(JTSK03) and ortho-photomosaic, State Geological Institute of Dionýz Štúr: slope failures, modified 
by the author

Appendix 5: Slope failures digitised on the basis of “HILLSHADE” and “QUALITY_TERRAIN” and their location on slopes of different 
categories
Source: VUJE a.s.: overhead transmission powerline, poles and protection zone, Google Maps Tileset, modified by the author; author’s 
elaboration: “HILLSHADE”, “QUALITY_TERRAIN” and slope; photos: M. Slámová (2023)
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Appendix 7: Site C: Application of the new method to different resolutions of digital terrain models to identify terrain edges on slopes in 
“QUALITY_TERRAIN”
Source: VUJE a.s.: overhead transmission powerline, poles, protection zone and extra dense LiDAR, The Geodesy, Cartography and Cadastre 
Authority of the Slovak Republic: DMR5.0 (1 m) JTSK(JTSK03) and DMR3.5 modified by the author; author’s elaboration: “HILLSHADE”, 
“QUALITY_TERRAIN”; photo: M. Slámová (2023)
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